121 research outputs found

    Chinese ‘low-tar’ cigarettes do not deliver lower levels of nicotine and carcinogens

    Get PDF
    BackgroundLow-tar cigarette smoking is gaining popularity in China. The China National Tobacco Corporation (CNTC) promotes low-tar cigarettes as safer than regular cigarettes.MethodsA total of 543 male smokers smoking cigarettes with different tar yields (15 mg, regular cigarettes, 10-13 mg low-tar cigarettes and < 10 mg low-tar cigarettes) were recruited in Shanghai, China, who then completed a questionnaire on smoking behaviour and provided a urine sample for analysis of the nicotine metabolites cotinine and trans-3'-hydroxycotinine. A total of 177 urine samples were selected at random for the analysis of the carcinogens polycyclic aromatic hydrocarbon metabolites (PAHs) (1-hydroxypyrene, naphthols, hydroxyfluorenes and hydroxyphenanthrenes) and the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK) metabolites, 4-(methylnitrosamino)-1-(3-pyridyl)-butanol (NNAL) and NNAL-glucuronide. Values were normalised by creatinine to correct for possible distortions introduced by dilution or concentration of the urine.ResultsSmokers of low-tar cigarettes smoked fewer cigarettes per day (p=0.001) compared to smokers of regular cigarettes. Despite this lower reported consumption, levels of cotinine, trans-3'-hydroxycotinine and PAHs in urine of people smoking low-tar cigarettes were not correlated with nominal tar delivery of the cigarettes they smoked. Urine concentrations of NNAL were higher in smokers of lower tar than higher tar cigarettes.ConclusionsChinese low-tar cigarettes do not deliver lower doses of nicotine and carcinogens than regular cigarettes, therefore it is unlikely that there would be any reduction in harm. CNTC's promotion of low-tar cigarettes as 'less harmful' is a violation of the World Health Organization Framework Convention on Tobacco Control, which China ratified in 2005

    E-cigarette puffing patterns associated with high and low nicotine e-liquid strength: effects on toxicant and carcinogen exposure

    Get PDF
    Contrary to intuition, use of lower strength nicotine e-liquids might not offer reduced health risk if compensatory puffing behaviour occurs. Compensatory puffing (e.g. more frequent, longer puffs) or user behaviour (increasing the wattage) can lead to higher temperatures at which glycerine and propylene glycol (solvents used in e-liquids) undergo decomposition to carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. This study aims to document puffing patterns and user behaviour associated with using high and low strength nicotine e-liquid and associated toxicant/carcinogen exposure in experienced e-cigarette users (known as vapers herein)

    Biomarkers of Electronic Nicotine Delivery Systems (ENDS) use

    No full text
    This perspective summarizes available evidence on biomarkers of exposure in electronic nicotine delivery system (ENDS) users to aid the overall assessment of the health consequences of using ENDS. Identification of novel biomarkers of exposure specific to ENDS use remains challenging because chemicals emitted from ENDS devices have many familiar sources. The biomarker levels of many tobacco-related toxicants measured in biological samples collected from ENDS users did not differ significantly from non-users, except for nicotine metabolites and a small number of biomarkers of exposure to volatile organic compounds and tobacco-specific tobacco nitrosamines. Several studies have shown that while exposed to nicotine, long-term exclusive ENDS users showed significantly lower levels of toxicant biomarkers than cigarette smokers. Studies have also shown that concurrent users of ENDS and combustible cigarettes (‘dual users’) are not reducing overall exposure to harmful toxicants compared to exclusive cigarette smokers. Because of an absence of validated ENDS-specific biomarkers, we recommend combining several biomarkers to differentiate tobacco product user groups in population-based studies and monitor ENDS compliance in randomized controlled trials. Using a panel of biomarkers would provide a better understanding of health effects related to ENDS use
    • …
    corecore